

two steps find analogy in the Hafner-Ziegler azulene synthesis.¹⁸

The subtle factors that control the competition between spiro $[4 + 2]$ and $[6 + 4]$ cycloadditions are currently under investigation.

Acknowledgment. We are grateful to the National Science Foundation and the National Institutes of Health for financial support of this research. The 300-MHz spectrometer (Pittsburgh) and X-ray diffractometer (LSU) were acquired with funds from the National Science Foundation, to whom we are triply grateful.

Supplementary Material Available: ORTEP drawing of **5a,** crystallographic data **for 5a,** and table of positional and thermal parameters (6 pages). Ordering information is given on any current masthead page.

(18) Ziegler, K.; Hafner, K. *Angew.* Chem. **1965,67,301.** Hafner, **K** *Justus Liebigs Ann. Chem.* **1957,** *606,* **79.**

Alexander Z. Bimanand, Y. N. Gupta, Maria J. Doa Thomas A. Eaton, K. N. Houk*

Department of Chemistry University of Pittsburgh Pittsburgh, Pennsylvania 15260

Frank R. Fronczek

Department of Chemistry Louisiana State University Baton Rouge, Louisiana **70803** *Received October 21,* **1982**

Regiospecific Total Synthesis of 6-Deoxyant hracyclines: 4-Demet hoxy-6-deoxydaunorubicin

Summary: A regiospecific approach to 6-deoxyanthracyclinones, which has resulted in the synthesis of the novel anthracycline **4-demethoxy-6-deoxydaunorubicin,** is reported. The construction of aglycone entails the coupling of the metalated **1,4-dimethoxynaphthalene** with **2 carbomethoxy-4-acetylcyclohexanal.** The new aldehyde was prepared from cis tetrahydrophthalic monoester via a regioselective acylation followed by conversion of the carboxylic group to a formyl group. The daunosaminyl glycoside showed on HeLa cells the same cytotoxicity as daunorubicin.

Sir: Recent advances in the regiospecific synthesis of anthracyclines have provided several new routes to aglycones with ring B as in daunomycinone **(1)'** or in its **11** deoxy analogue **(2).2** Little attention has been focused on the synthesis of 6-deoxyanthracyclinones represented

hitherto by naturally occurring pigments δ -rhodomycinone **(3)**,³ α_2 -rhodomycinone **(4)**, α -citromycinone **(5)**, and γ citromycinone **(6).4** In this communication we report the synthesis of the novel anthracycline 4-demethoxy-6 deoxydaunorubicin **(7).**

Our original synthetic approach for the construction of the aglycone **8** entails the coupling of the metalated 1,4 dimethoxynaphthalene **(9),** which formally represents the CD rings, with the new aldehyde **10,** the ring **A** precursor, followed by cyclization affording ring **B** as illustrated in our original synthetic approach for the construction of
the aglycone 8 entails the coupling of the metalated 1,4-
dimethoxynaphthalene (9), which formally represents the
CD rings, with the new aldehyde 10, the ring A precu

13,
$$
R^1 = R^2 = CH_3
$$
; $R^3 = COCH_3$

The substrate **115** was chosen as inexpensive starting material for the preparation of **10.** The reaction of **11** with CH₃COCl (i, CHCl₃, 3 equiv of AlCl₃, -5 °C, 8 h; ii, K_2CO_3 , room temperature, 5 h) gave regioselectively 12^6 (mp 117-121 "C) in 65% overall yield after crystallization. The regioselectivity of this reaction, affording only **12,** is probably due to the polarization induced on the double bond of **11** by an intermediate aluminum carboxylate. The structure of 12 was supported by spectroscopic⁷ and chemical8 evidence. Compound **12** was readily transformed into **10,** obtained as an oil in **45%** overall yield (i, EtOH,

⁽¹⁾ For a comprehensive review, see: Arcamone, F. *Med.* Chem. *(Academic)* **1981,** *17.*

⁽²⁾ (a) Kimball, S. D.; Walt, D. R.; Johnson, F. *J. Am. Chem. SOC.* **1981,103,1561.** (b) Kende, **A.** S.; Boettger, S. D. *J. Org.* Chem. **1981,46, 2799.**

⁽³⁾ Brockmann, H.; Brockmann, H., Jr. Chem. *Ber.* **1963, 96, 1771. (4)** (a) Brockmann, H.; Niemeyer, J. Chem. Ber. **1968,101, 1341. (b)** Gesson, J. P.; Jacquesy, J. C.; Mondon, M. *Tetrahedron Lett.* **1981,1337.** (c) Kende, A. *S.;* Gesson, J. P.; Demuth, T. P. *Ibid.* **1981, 1667.**

⁽⁵⁾ Yadav, J.; Corey, P.; Hsu, C. T.; Perlman, **IC.;** Sih, C. J. Tetrahedron Lett. **1981**, 811.

(6) All products showed ¹H and ¹³C NMR, IR, and mass spectra con-

sistent with the assigned structures. Melting points are uncorrected; the yields are unoptimized.

 Pd/C , H_2 ; ii, $HS(CH_2)_2SH$, p-TSA; iii, ClCO₂Et, Et₃N; iv, THF, NaBH₄, -75 °C; v, CH_2Cl_2 , PCC, room temperature). The generation of the nucleophile **9** by reaction of 1,4 dimethoxy-2-bromonaphthalene⁹ with 1.0 equiv of *n*-BuLi $(Et₂O, -70 °C)$ and the subsequent addition of aldehyde **10** (Et,O, from **-70** "C to room temperature) followed by the usual workup gave a crude reaction mixture,¹⁰ which was treated directly with concentrated H_2SO_4 (room temperature, 30 min) to afford the tetracyclic target **14** (mp 174-176 "C) isolated in 10% overall yield (based on **10)** after chromatography. The introduction of the tertiary hydroxyl group to give 15 (mp 201-202 °C) was performed according to a known procedure¹¹ (i, Ac₂O, p-TSA, 120 \degree C, 12 h; ii, CH_2Cl_2 , *m*-chloroperbenzoic acid; iii, OH⁻; iv, H⁺) in 60% overall yield. The final step to achieve **8** was the introduction of the hydroxyl group at C-7 in **16** (mp 211-212 °C) via homolytic bromination (Br₂, AlBN, CCl₄, 45 "C, 6 h) followed by alkaline treatment (0.1 N aqueous NaOH).12 Finally, acid hydrolysis of the ketal group gave **8** (mp 206-208 *"C)* (26% overall yield from **15):** IR (KBr) 1705, 1665, 1625 cm⁻¹; UV (MeOH) λ_{max} 248, 256, 330, 406 nm; 'H NMR (200 MHz, CDC1,) *6* 2.2-2.04 (m, H-8), 2.41 $(s, COCH₃), 2.94$ (d, $J = 18$ Hz, $H_{ax}-10$), 3.07 (d, $J = 18$ Hz, He-lO), 4.08 (d, *J* = 10 Hz, OH-7), 4.45 **(s,** OH-9), 4.91 (br d, H_e -7, $J = 10$ Hz; after D₂O addition $W_H = 8$ Hz), 7.82 (m, H-2, H-3),8.00 (s, H-6), 8.32 (m, H-1, H-4), 13.10 (5, OH-11).

Glycosidation of **8** with **1-chloro-N,O-(trifluoroacety1)** d aunosamine¹³ was performed according to a stereoselective procedure¹⁴ with AgSO₃CF₃ to yield the mixture of the two α diastereoisomers 17 [mp 155-160 $^{\circ}$ C dec); ¹H NMR $(270 \text{ MHz}, \text{CDCl}_3) \delta 1.34 \text{ (d, } J = 7 \text{ Hz}, \text{ CH}_3\text{-}5')$, 2.42 (s,

(8) Conversion of the carboxylic group of 12 to an hydroxyl group (Denny, D. B.; Sherman, N. *J. Org.* Chem. 1965, *30,* 3760) followed by alkaline aromatization afforded methyl 3-acetylbenzoate.

(9) Ungnade, H. E.; Hein, H. J. *Org.* Chem. 1949, *14,* 911.

(10) At least three products were detected by TLC. In a different run, in which the 2,2-(ethylenedioxy) derivative of 10 was used, a major product was isolated by chromatography and characterized as the lactone 19: ¹H NMR (200 MHz, CDCl₃) δ 1.23 (s, CH₃), 5.83 (br s, H_a), 6.59 (s, H_b).

(11) Suzuki, F.; Trembeath, S.; Gleim, R. D.; Sih, C. J. *J. Org. Chem.*

1978, *43,* 4159. (12) **Our** results are not in agreement with the activating effect **of** the peri-hydroxyl group on radical bromination, as suggested by Kende in citromycinone synthesis. The steric hindrance due to the ketalized side chain apparently directs the reaction to C-7, whereas in Kende's sub-strate, possessing an ethyl group at C-9, the position C-10 seems to be more easily attacked by the reagent. The stereoselectivity of hydroxylation is probably due to the assistance of the 9-OH **[see** for instance: (a) Kende, A. *S.;* Rizzi, J. P. *J. Am.* Chem. Soc. 1981, *103,* 4247. (b) Confalone, P. N.; Pizzolato, G. *Ibid.* 1981, *103,* 42511.

(13) Arcamone, F.; Penco, *S.;* Vigevani, A. Cancer Chemother. 1975, 6, 123.

(14) Arcamone, F.; Penco, S.; Redaelli, *S.;* Hanessian, *S. J.* Med. Chem. 1976, 19, 1424.

 H_e -10), 5.01 (m, W_H = 7 Hz, H-7), 5.20 (m, W_H = 5.0 Hz, H-l'), 6.76 (br d, *J* = 8 Hz, NH), 7.82 (s, H-6)] and **18** [mp 135-140 °C dec; ¹H NMR (270 MHz, CDCl₃) δ 1.45 (d, J H_{ax} -10), 3.30 (d, $J = 15$ Hz, H_{e} -10), 5.07 (m, $W_H = 7$ Hz, H-7), 5.26 (m, $W_H = 5$ Hz, H-1[']), 6.73 (br d, $J = 8$ Hz, NH), 7.75 (s, H-6)], separated by silica gel chromatography. In 6-deoxy glycosides a discrimination between natural¹⁵ $7(S),9(S)$ and unnatural $7(R),9(R)$ configuration was not possible on the basis of NMR data, which were instead determinant in the case of 4-demethoxydaunorubicins. In the latter case the relative shieldings¹⁶ of H-7 and H-1' changed significantly for the diastereoisomers, possibly due to different associations of OH-6 and the oxygen of the sugar ring, as proposed by Nakata. 17 The natural configuration was assigned to **17** on the basis of the similarity of its CD curve with that of daunorubicin.18 Compound **7,** obtained from **17** after hydrolysis of the N-protecting $r = 17$ ng/mL) as daunorubicin, while the free amino glycoside obtained from 18 was practically inactive $(ID_{50} >$ 1000 ng/mL). COCH₃), 3.09 (d, $J = 15$ Hz, H_{ax}-10), 3.17 (d, $J = 15$ Hz, $= 7$ Hz, CH₃-5'), 2.41 (s, COCH₃), 3.00 (d, $J = 15$ Hz,

Acknowledgment. We are grateful to Dr. B. Gioia and A. Vigevani for mass and CD spectra and to A. M. Casazza for cytotoxic activity data.

(19) Casazza, A. M. Cancer Treat. Rep. 1979, 63, 835.

Sergio Penco,* Francesco Angelucci Federico Arcamone, Marzia Ballabio Giovanna Barchielli, Giovanni Franceschi Giuciano Franchi, Antonino Suarato, Ermes Vanotti

> Farmitalia Carlo Erba SpA Ricerca e Sviluppo Chimico Via **dei** Gracchi 35 *20146* Milan, Italy Received October *I,* 1982

^{(7) &}lt;sup>13</sup>C NMR of 12 (CDCl₃) 24.1 (C-6), 25.1 (CH₃CO), 26.2 (C-3), 38.9 (C-1), 39.3 (C-2), 52.0 (OCH₃), 137.4 (C-4), 138.0 (C-5), 173.0 (COOCH₃),
178.0 (COOH), 198.3 ppm (**COCH**₃). ¹³C NMR of 13 (mp 58–60 °C) (CDCl₃) 24.1 (C-6), 25.1 (**CH**₃CO), 26.3 (C-3), 39.1 (C-2), 39.4 (C-1), 51.8
(2 OCH₃), 137.7 (C-4), 137.8 (C-5), 172.6, 172.9 ppm (2 **C**OOCH₃). Carbons α to carboxylic groups are somewhat less deshielded than carbons α to carbomethoxy groups ($\Delta \delta = 1$ ppm; see Wehrli, F. W.; Wirthlin, T.
"Interpretation of ¹³C-NMR Spectra"; Heyden: London, 1978; p 37). The best agreement between the calculated and experimental values of 12, considering the difference in shielding at C-1 and C-2 and the values of 13, was found for the structure with the carboxylic group at C-1.

⁽¹⁵⁾ Natural stereochemistry as in daunomycinone.

⁽¹⁶⁾ In the natural configuration H-7, and H-1' **are** at 6 5.13 and 5.43, respectively; in the unnatural configuration, H-7 and H-1' are at 5.33 and 5.22 (unpublished results from our laboratory). **[See** also: Habilitationschrift Fachbereich Chemie der Universität Hamburg vorgelegt von Dr.
rer. nat. Karsten Khron, Hamburg, Germany, 1979.]

⁽¹⁷⁾ Nakata, Y.; Hopfinger, A. J. *FBBS* Lett. 1980, 117, 259.

^{(18) (}a) Marsh, J. P.; Iwamoto, R. H.; Goodman, L. Chem. *Commun.* 1968,589. (b) Arcamone, F.; Cassinelli, G.; Franceschi, G.; Penco, S.; Pol, C.; Redaelli, S.; Selva, A. International Symposium on Adriamycin, Springer-Verlag: Berlin, 1972.